

Motion in a Straight Line

3.3 Average Velocity and Average Speed

- A particle covers half of its total distance with speed v_1 and the rest half distance with speed v_2 . Its average speed during the complete journey is

- (a) $\frac{v_1 + v_2}{2}$ (b) $\frac{v_1 v_2}{v_1 + v_2}$ (c) $\frac{2v_1 v_2}{v_1 + v_2}$ (d) $\frac{v_1^2 v_2^2}{v_1^2 + v_2^2}$ (Mains 2011)
- A car moves from X to Y with a uniform speed v_u and returns to X with a uniform speed v_d . The average speed for this round trip is
 - (a) $\sqrt{v_u v_d}$
- (b) $\frac{v_d v_u}{v_d + v_u}$
- (c) $\frac{v_u + v_d}{2}$ (d) $\frac{2v_d v_u}{v_d + v_u}$
- (2007)
- A car runs at a constant speed on a circular track of radius 100 m, taking 62.8 seconds for every circular lap. The average velocity and average speed for each circular lap respectively is
 - (a) 10 m/s, 0
- (b) 0, 0
- (c) 0, 10 m/s
- (d) 10 m/s, 10 m/s. (2006)
- A car moves a distance of 200 m. It covers the first half of the distance at speed 40 km/h and the second half of distance at speed ν . The average speed is 48 km/h. The value of ν is
 - (a) 56 km/h
- (b) 60 km/h
- (c) 50 km/h
- (d) 48 km/h.
- (1991)
- A bus travelling the first one-third distance at a speed of 10 km/h, the next one-third at 20 km/h and at last one-third at 60 km/h. The average speed of the bus is
 - (a) 9 km/h
- (b) 16 km/h
- (c) 18 km/h
- (d) 48 km/h.
 - (1991)
- A car covers the first half of the distance between two places at 40 km/h and another half at 60 km/h. The average speed of the car is

- (a) 40 km/h
- (b) 48 km/h
- (c) 50 km/h
- (d) 60 km/h.
- (1990)

3.4 Instantaneous Velocity and Speed

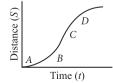
- Two cars P and Q start from a point at the same time in a straight line and their positions are represented by $x_P(t) = (at + bt^2)$ and $x_O(t) = (ft - t^2)$. At what time do the cars have the same velocity?

- (a) $\frac{a-f}{1+b}$ (b) $\frac{a+f}{2(b-1)}$ (c) $\frac{a+f}{2(1+b)}$ (d) $\frac{f-a}{2(1+b)}$ (NEET-II 2016)
- If the velocity of a particle is $v = At + Bt^2$, where A and B are constants, then the distance travelled by it between 1 s and 2 s is
 - (a) $\frac{3}{2}A + \frac{7}{3}B$ (b) $\frac{A}{2} + \frac{B}{3}$

 - (c) $\frac{3}{2}A + 4B$ (d) 3A + 7B (NEET-I 2016)
- The displacement 'x' (in meter) of a particle of mass 'm' (in kg) moving in one dimension under the action of a force, is related to time t (in sec) by $t = \sqrt{x} + 3$. The displacement of the particle when its velocity is zero, will be
 - (a) 4 m
- (b) 0 m (zero)
- (c) 6 m
- (d) 2 m

(Karnataka NEET 2013)

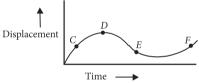
10. A particle shows distance-time curve as given in this figure. The maximum instantaneous velocity of the particle is around the point



- (a) D
- (b) A
- (c) B
- (d) C

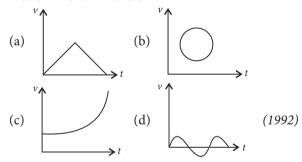
(2008)

- 11. The position x of a particle with respect to time t along x-axis is given by $x = 9t^2 - t^3$ where x is in metres and *t* in seconds. What will be the position of this particle when it achieves maximum speed along the +x direction?
 - (a) 54 m (b) 81 m (c) 24 m (d) 32 m. (2007)
- **12.** A particle moves along a straight line *OX*. At a time *t* (in seconds) the distance *x* (in metres) of the particle from *O* is given by $x = 40 + 12t - t^3$. How long would the particle travel before coming to rest?
 - (a) 16 m (b) 24 m (c) 40 m (d) 56 m (2006)
- 13. The displacement x of a particle varies with time tas $x = ae^{-\alpha t} + be^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will
 - (a) be independent of β
 - (b) drop to zero when $\alpha = \beta$
 - (c) go on decreasing with time
 - (d) go on increasing with time. (2005)
- 14. The displacement-time graph of a moving particle is shown below. The instantaneous velocity of the particle is negative at the point



- (a) E

- (c) C
- (1994)(d) D
- 15. Which of the following curve does not represent motion in one dimension?



3.5 Acceleration

- 16. A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to $v(x) = \beta x^{-2n}$, where β and n are constants and x is the position of the particle. The acceleration of the particle as a function of x, is given by
 - (a) $-2\beta^2 x^{-2n+1}$ (b) $-2n\beta^2 e^{-4n+1}$ (c) $-2n\beta^2 x^{-2n-1}$ (d) $-2n\beta^2 x^{-4n-1}$

(2015 Cancelled)

17. The motion of a particle along a straight line is described by equation $x = 8 + 12t - t^3$ where x is in metre and *t* in second. The retardation of the particle when its velocity becomes zero is

f = 0, the particle's velocity (v_x) is

of the particle at t = 1 sec is

- (a) 24 m s^{-2}
- (b) zero
- (c) 6 m s^{-2}
- (d) 12 m s^{-2} (2012)
- **18.** A particle moves a distance x in time t according to equation $x = (t + 5)^{-1}$. The acceleration of particle is proportional to
 - (a) $(velocity)^{3/2}$
- (b) (distance)²
- (c) (distance)⁻²
- (d) $(velocity)^{2/3}$
- **19.** A particle moving along x-axis has acceleration f, at time t, given by $f = f_0 \left(1 - \frac{t}{T} \right)$, where f_0 and T are constants. The particle at t = 0 has zero velocity. In the time interval between t = 0 and the instant when
 - (a) $\frac{1}{2}f_0T^2$ (b) f_0T^2
 - (c) $\frac{1}{2} f_0 T$ (d) $f_0 T$
- 20. Motion of a particle is given by equation $s = (3t^3 + 7t^2 + 14t + 8)$ m. The value of acceleration
 - (a) 10 m/s^2
- (b) 32 m/s^2
- (c) 23 m/s^2
- (d) 16 m/s^2 .
 - (2000)

(1995)

(2007)

(2010)

- **21.** The position x of a particle varies with time, (t) as $x = at^2 - bt^3$. The acceleration will be zero at time t is equal to
 - (a) $\frac{a}{3b}$ (b) zero (c) $\frac{2a}{3b}$ (d) $\frac{a}{b}$
- 22. The acceleration of a particle is increasing linearly with time *t* as *bt*. The particle starts from origin with an initial velocity v_0 . The distance travelled by the particle in time *t* will be
 - (a) $v_0 t + \frac{1}{3}bt^2$ (b) $v_0 t + \frac{1}{2}bt^2$
 - (c) $v_0 t + \frac{1}{6} b t^3$ (d) $v_0 t + \frac{1}{3} b t^3$
- 23. A particle moves along a straight line such that its displacement at any time t is given by $s = (t^3 - 6t^2 + 3t + 4)$ metres. The velocity when the
 - (a) 3 m/s
- (b) 42 m/s
- (c) -9 m/s

acceleration is zero is

- (d) -15 m/s(1994)
- 3.6 Kinematic Equations for Uniformly **Accelerated Motion**
- 24. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is $(g = 10 \text{ m/s}^2)$
 - (a) 360 m
- (b) 340 m
- (c) 320 m
- (d) 300 m
- (NEET 2020)

Motion in a Straight Line 11

25. A stone falls freely under gravity. It covers distances h_1 , h_2 and h_3 in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between h_1 , h_2 and h_3 is

- (a) $h_2 = 3h_1$ and $h_3 = 3h_2$
- (b) $h_1 = h_2 = h_3$

(c) $h_1 = 2h_2 = 3h_3$ (d) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$

- **26.** A boy standing at the top of a tower of 20 m height drops a stone. Assuming $g = 10 \text{ m s}^{-2}$, the velocity with which it hits the ground is
 - (a) 10.0 m/s
- (b) 20.0 m/s
- (c) 40.0 m/s
- (d) 5.0 m/s

(2011)

- 27. A ball is dropped from a high rise platform at t = 0 starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two balls meet at t = 18 s. What is the value of ν ? (Take $g = 10 \text{ m/s}^2$)
 - (a) 75 m/s (b) 55 m/s (c) 40 m/s (d) 60 m/s (2010)
- 28. A particle starts its motion from rest under the action of a constant force. If the distance covered in first 10 seconds is S_1 and that covered in the first 20 seconds is S_2 , then
 - (a) $S_2 = 3S_1$
- (b) $S_2 = 4S_1$ (d) $S_2 = 2S_1$
 - (c) $S_2 = S_1$

29. A particle moves in a straight line with a constant acceleration. It changes its velocity from 10 m s⁻¹ to 20 m s⁻¹ while passing through a distance 135 m in tsecond. The value of t is

- (a) 12
- (b) 9
- (c) 10
- (d) 1.8 (2008)
- **30.** The distance travelled by a particle starting from rest and moving with an acceleration $\frac{4}{3}$ m s⁻², in the third second is
 - (a) $\frac{10}{3}$ m (b) $\frac{19}{3}$ m (c) 6 m (d) 4 m (2008)
- **31.** Two bodies A (of mass 1 kg) and B (of mass 3 kg) are dropped from heights of 16 m and 25 m, respectively. The ratio of the time taken by them to reach the ground is
 - (a) 4/5
 - (b) 5/4
- (c) 12/5
- (d) 5/12 (2006)
- **32.** A ball is thrown vertically upward. It has a speed of 10 m/sec when it has reached one half of its maximum height. How high does the ball rise? (Take $g = 10 \text{ m/s}^2$)
 - (a) 10 m (b) 5 m (c) 15 m (d) 20 m (2005)
- 33. A man throws balls with the same speed vertically upwards one after the other at an interval of 2 seconds. What should be the speed of the throw so that more than two balls are in the sky at any time? (Given $g = 9.8 \text{ m/s}^2$)

- (a) more than 19.6 m/s
- (b) at least 9.8 m/s
- (c) any speed less than 19.6 m/s
- (d) only with speed 19.6 m/s

(2003)

34. If a ball is thrown vertically upwards with speed u, the distance covered during the last t seconds of its ascent is

- (a) ut
- (b) $\frac{1}{2}gt^2$
- (c) $ut \frac{1}{2}gt^2$
- (d) (u + gt)t(2003)
- 35. A particle is thrown vertically upward. Its velocity at half of the height is 10 m/s, then the maximum height attained by it $(g = 10 \text{ m/s}^2)$
 - (a) 8 m
- (b) 20 m (c) 10 m (d) 16 m. (2001)
- 36. A car moving with a speed of 40 km/h can be stopped by applying brakes after atleast 2 m. If the same car is moving with a speed of 80 km/h, what is the minimum stopping distance?
 - (a) 4 m

 - (b) 6 m (c) 8 m
- (d) 2 m (1998)
- 37. If a car at rest accelerates uniformly to a speed of 144 km/h in 20 s, it covers a distance of
 - (a) 1440 cm
- (b) 2980 cm
- (c) 20 m
- (d) 400 m (1997)
- **38.** A body dropped from a height *h* with initial velocity zero, strikes the ground with a velocity 3 m/s. Another body of same mass dropped from the same height h with an initial velocity of 4 m/s. The final velocity of second mass, with which it strikes the ground is
 - (a) 5 m/s
- (b) 12 m/s
- (c) 3 m/s
- (d) 4 m/s.
- **39.** The water drop falls at regular intervals from a tap 5 m above the ground. The third drop is leaving the tap at instant the first drop touches the ground. How far above the ground is the second drop at that instant?
 - (a) 3.75 m (b) 4.00 m (c) 1.25 m (d) 2.50 m.(1995)
- **40.** A car accelerates from rest at a constant rate α for some time after which it decelerates at a constant rate β and comes to rest. If total time elapsed is t, then maximum velocity acquired by car will be
 - (a) $\frac{(\alpha^2 \beta^2)t}{\alpha\beta}$ (b) $\frac{(\alpha^2 + \beta^2)t}{\alpha\beta}$ (c) $\frac{(\alpha + \beta)t}{\alpha\beta}$ (d) $\frac{\alpha\beta t}{\alpha + \beta}$
- (1994)
- 41. The velocity of train increases uniformly from 20 km/h to 60 km/h in 4 hours. The distance travelled by the train during this period is
 - (a) 160 km
- (b) 180 km
- (c) 100 km
- (d) 120 km
- (1994)

- **42.** A body starts from rest, what is the ratio of the distance travelled by the body during the 4th and 3rd second?

- (1993)
- 43. A body dropped from top of a tower fall through 40 m during the last two seconds of its fall. The height of tower is $(g = 10 \text{ m/s}^2)$
 - (a) 60 m
- (b) 45 m
- (c) 80 m
- (d) 50 m
- 44. What will be the ratio of the distance moved by a freely falling body from rest in 4th and 5th seconds of journey?
 - (a) 4:5
- (b) 7:9
- (c) 16:25
- (d) 1:1.
- (1989)
- **45.** A car is moving along a straight road with a uniform acceleration. It passes through two points P and Q separated by a distance with velocity 30 km/h and 40 km/h respectively. The velocity of the car midway between *P* and *O* is
 - (a) 33.3 km/h
- (b) $20\sqrt{2} \text{ km/h}$
- (c) $25\sqrt{2} \text{ km/h}$
- (d) 35 km/h.
- (1988)

3.7 Relative Velocity

- 46. Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_1 . On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time t_2 . The time taken by her to walk up on the moving escalator will be

 - (a) $\frac{t_1 t_2}{t_2 t_1}$ (b) $\frac{t_1 t_2}{t_2 + t_1}$

 - (c) $t_1 t_2$ (d) $\frac{t_1 + t_2}{2}$ (NEET 2017)
- 47. A bus is moving with a speed of 10 m s^{-1} on a straight road. A scooterist wishes to overtake the bus in 100 s. If the bus is at a distance of 1 km from the scooterist, with what speed should the scooterist chase the bus?
 - (a) 40 m s^{-1}
- (b) 25 m s^{-1}
- (c) 10 m s^{-1}
- (d) 20 m s^{-1}
- 48. A train of 150 metre length is going towards north direction at a speed of 10 m/s. A parrot flies at the speed of 5 m/s towards south direction parallel to the railways track. The time taken by the parrot to cross the train is
 - (a) 12 s
- (b) 8 s
- (c) 15 s
- (d) 10 s

ANSWER KEY

- (c) (d) (c) (b) (c) (b) (d) (a) (b) **10.** (d)
- 11. (a) 12. (a) **13.** (d) (a) 15. (b) **16.** (b) (d) **18.** (a) **19.** (c) **20.** (b) 14.
- **21.** (a) **22.** (c) 23. (c) 24. (d) 25. (d) **26.** (b) (a) **28.** (b) **29.** (b) **30.** (a)
- (d) **32.** (a) (a) (b) 35. (c) **36.** (c) **38.** (a) **39.** (a) **31.** (a) 33. **34. 40.** (d) **41.** (a) **42.** (a) (b)
 - (b) **45.** (c) **47.** (d) **48.** (d)

Hints & Explanations

- (c): Let S be the total distance travelled by the
- Let t_1 be the time taken by the particle to cover first half of the distance. Then $t_1 = \frac{S/2}{v_1} = \frac{S}{2v_1}$
- Let t_2 be the time taken by the particle to cover remaining half of the distance. Then
 - $t_2 = \frac{S/2}{v_2} = \frac{S}{2v_2}$

rage speed,

$$v_{\text{av}} = \frac{\text{Total distance travelled}}{\text{Total time taken}}$$

$$= \frac{S}{t_1 + t_2} = \frac{S}{\frac{S}{2v_1} + \frac{S}{2v_2}} = \frac{2v_1v_2}{v_1 + v_2}$$

(d): Average speed = $\frac{\text{total distance travelled}}{}$

$$= \frac{s+s}{t_1+t_2} = \frac{2s}{\frac{s}{v_u} + \frac{s}{v_d}} = \frac{2v_u v_d}{v_d + v_u}.$$

- (c): Distance travelled in one rotation (lap) = $2\pi r$
- $\therefore \text{ Average speed} = \frac{\text{distance}}{\text{time}} = \frac{2\pi r}{t}$ $= \frac{2 \times 3.14 \times 100}{62.8} = 10 \text{ m s}^{-1}$ Net displacement in one lap = 0

Average velocity = $\frac{\text{net displacement}}{\text{time}} = \frac{0}{t} = 0.$

(b): Total distance travelled = 200 m

Total time taken =
$$\frac{100}{40} + \frac{100}{v}$$

Average speed = $\frac{\text{total distance travelled}}{}$

$$48 = \frac{200}{\left(\frac{100}{40} + \frac{100}{v}\right)} \text{ or } 48 = \frac{2}{\left(\frac{1}{40} + \frac{1}{v}\right)}$$

or
$$\frac{1}{40} + \frac{1}{v} = \frac{1}{24}$$
 or $\frac{1}{v} = \frac{1}{24} - \frac{1}{40} = \frac{5-3}{120} = \frac{1}{60}$

v = 60 km/h

(c): Total distance travelled = s

Total time taken =
$$\frac{s/3}{10} + \frac{s/3}{20} + \frac{s/3}{60}$$

= $\frac{s}{30} + \frac{s}{60} + \frac{s}{180} = \frac{10s}{180} = \frac{s}{18}$

Average speed = $\frac{\text{total distance travelled}}{}$ total time taken $=\frac{s}{s/18} = 18 \text{ km/h}$

6. (b): Total distance covered =
$$s$$

Total time taken =
$$\frac{s/2}{40} + \frac{s/2}{60} = \frac{5s}{240} = \frac{s}{48}$$

∴ Average speed =
$$\frac{\text{total distance covered}}{\text{total time taken}}$$
$$= \frac{s}{\left(\frac{s}{48}\right)} = 48 \text{ km/h}$$

7. (d): Position of the car
$$P$$
 at any time t , is

$$x_P(t) = at + bt^2;$$
 $v_P(t) = \frac{dx_P(t)}{dt} = a + 2bt$
Similarly, for car Q,

$$x_Q(t) = ft - t^2; \quad v_Q(t) = \frac{dx_Q(t)}{dt} = f - 2t$$
 ...(ii)

$$v_p(t) = v_0(t)$$
 (Given)

$$\therefore$$
 $a + 2bt = f - 2t$ or, $2t(b + 1) = f - a$

$$\therefore t = \frac{f - a}{2(1 + b)}$$

8. (a): Velocity of the particle is $v = At + Bt^2$

$$\frac{ds}{dt} = At + Bt^2$$
; $\int ds = \int (At + Bt^2)dt$

$$\therefore s = \frac{At^2}{2} + B\frac{t^3}{3} + C$$

$$s(t=1 \text{ s}) = \frac{A}{2} + \frac{B}{3} + C; s(t=2 \text{ s}) = 2A + \frac{8}{3}B + C$$

Required distance = s(t = 2 s) - s(t = 1 s)

$$= \left(2A + \frac{8}{3}B + C\right) - \left(\frac{A}{2} + \frac{B}{3} + C\right) = \frac{3}{2}A + \frac{7}{3}B$$

9. (b): Given $t = \sqrt{x} + 3$ or $\sqrt{x} = t - 3$

Squaring both sides, we get $x = (t - 3)^2$

Velocity,
$$v = \frac{dx}{dt} = \frac{d}{dt}(t-3)^2 = 2(t-3)$$

Velocity of the particle becomes zero, when

$$2(t-3) = 0$$
 or $t = 3$ s

At
$$t = 3$$
 s, $x = (3 - 3)^2 = 0$ m

10. (d): Because the slope is highest at *C*,

$$v = \frac{ds}{dt}$$
 is maximum

11. (a): Given:
$$x = 9t^2 - t^3$$

Speed
$$v = \frac{dx}{dt} = \frac{d}{dt}(9t^2 - t^3) = 18t - 3t^2$$
.

For maximum speed, $\frac{dv}{dt} = 0 \implies 18 - 6t = 0$

$$\therefore$$
 $t=3$

$$\therefore x_{\text{max}} = 81 \text{ m} - 27 \text{ m} = 54 \text{ m}$$

12. (a) :
$$x = 40 + 12t - t^3$$

$$\therefore \text{ Velocity, } v = \frac{dx}{dt} = 12 - 3t^2$$

When particle come to rest, $\frac{dx}{dt} = v = 0$

$$\therefore 12 - 3t^2 = 0 \implies 3t^2 = 12 \implies t = 2 \text{ sec.}$$

Distance travelled by the particle before coming to rest

$$\int_{0}^{s} ds = \int_{0}^{2} v dt \quad \text{or} \quad s = \int_{0}^{2} (12 - 3t^{2}) dt = 12t - \frac{3t^{3}}{3} \Big|_{0}^{2}$$

$$s = 12 \times 2 - 8 = 24 - 8 = 16 \text{ m}.$$

13. (d):
$$x = ae^{-\alpha t} + be^{\beta t}$$
; $\frac{dx}{dt} = -a\alpha e^{-\alpha t} + b\beta e^{\beta t}$

Velocity will increases with time

14. (a): The velocity
$$(v) = \frac{ds}{dt}$$

Therefore, instantaneous velocity at point *E* is negative.

15. (b): In one dimensional motion, the body can have one value of velocity at a time but not two values of velocities at a time.

16. (d): According to question, velocity of unit mass varies as

$$v(x) = \beta x^{-2n} \qquad \dots (i)$$

$$\frac{dv}{dx} = -2n\beta x^{-2n-1} \qquad \dots (ii)$$

Acceleration of the particle is given by

$$a = \frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt} = \frac{dv}{dx} \times v$$

Using equation (i) and (ii), we get

$$a = (-2n\beta x^{-2n-1}) \times (\beta x^{-2n}) = -2n\beta^2 x^{-4n-1}$$

17. (d): Given: $x = 8 + 12t - t^3$

Velocity,
$$v = \frac{dx}{dt} = 12 - 3t^2$$

When v = 0, $12 - 3t^2 = 0$ or t = 2 s

$$a = \frac{dv}{dt} = -6t$$

$$a|_{t=2} = -12 \text{ m s}^{-2}$$

Retardation = 12 m s^{-2}

18. (a): Distance, $x = (t + 5)^{-1}$

Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t+5)^{-1} = -(t+5)^{-2}$ Acceleration, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t+5)^{-2}]$

...(iii)

From equation (ii), we get

$$v^{3/2} = -(t+5)^{-3} \qquad ...(iv)$$

Substituting this in equation (iii), we get Acceleration, $a = -2v^{3/2}$ or $a \propto (\text{velocity})^{3/2}$

From equation (i), we get

$$x^3 = (t+5)^{-3}$$

Substituting this in equation (iii), we get Acceleration, $a = 2x^3$ or $a \propto (distance)^3$ Hence option (a) is correct.

19. (c) : Given : At time t = 0, velocity, v = 0.

Acceleration
$$f = f_0 \left(1 - \frac{t}{T} \right)$$

At $f = 0$, $0 = f_0 \left(1 - \frac{t}{T} \right)$

Since f_0 is a constant,

$$\therefore 1 - \frac{t}{T} = 0 \quad \text{or} \quad t = T.$$

Also, acceleration $f = \frac{dv}{dt}$

$$\therefore \int_{0}^{v_{x}} dv = \int_{t=0}^{t=T} f dt = \int_{0}^{T} f_{0} \left(1 - \frac{t}{T}\right) dt$$

$$\therefore v_x = \left[f_0 t - \frac{f_0 t^2}{2T} \right]_0^T = f_0 T - \frac{f_0 T^2}{2T} = \frac{1}{2} f_0 T.$$

20. (b):
$$\frac{ds}{dt} = 9t^2 + 14t + 14$$

$$\Rightarrow \frac{d^2s}{dt^2} = 18t + 14 = a$$

 $a_{t=1s} = 18 \times 1 + 14 = 32 \text{ m/s}^2$

21. (a): Distance $(x) = at^2 - bt^3$

Therefore velocity $(v) = \frac{dx}{dt} = \frac{d}{dt}(at^2 - bt^3) = 2at - 3bt^2$

Acceleration = $\frac{dv}{dt} = \frac{d}{dt}(2at - 3bt^2) = 2a - 6bt = 0$

or
$$t = \frac{2a}{6b} = \frac{a}{3b}$$

22. (c): Acceleration $\propto bt$. i.e., $\frac{d^2x}{dt^2} = a \propto bt$

Integrating, $\frac{dx}{dt} = \frac{bt^2}{2} + C$

Initially, t = 0, $dx/dt = v_0$

Therefore, $\frac{dx}{dt} = \frac{bt^2}{2} + v_0$

Integrating again, $x = \frac{bt^3}{6} + v_0 t + C$

When t = 0, $x = 0 \implies C = 0$.

i.e., distance travelled by the particle in time $t = v_0 t + \frac{bt^3}{4}$.

23. (c) : Displacement (s) = $t^3 - 6t^2 + 3t + 4$ m.

Velocity $(v) = \frac{ds}{dt} = 3t^2 - 12t + 3$ Acceleration $(a) = \frac{dv}{dt} = 6t - 12$.

When a = 0, we get t = 2 seconds.

Therefore velocity when the acceleration is zero is $v = 3 \times (2)^2 - (12 \times 2) + 3 = -9 \text{ m/s}$

24. (d): Here, $u = 20 \text{ m/s}, v = 80 \text{ m/s}, g = 10 \text{ m/s}^2, h = ?$

 $v^2 = u^2 + 2gh$ \Rightarrow 80² = 20² + 2 × 10 × h

Hence, h = 300 m

25. (d): Distance covered by the stone in first 5 seconds

(i.e.
$$t = 5$$
 s) is
 $h_1 = \frac{1}{2}g(5)^2 = \frac{25}{2}g$...(i)

Distance travelled by the

stone in next 5 seconds

(*i.e.* t = 10 s) is

$$h_1 + h_2 = \frac{1}{2}g(10)^2 = \frac{100}{2}g$$

 h_1 $A \quad t = 5 \text{ s}$ h_2 $B \quad t = 10 \text{ s}$ h_3 $C \quad t = 15 \text{ s}$

Distance travelled by the stone in next 5 seconds (*i.e.* t = 15 s) is

$$h_1 + h_2 + h_3 = \frac{1}{2}g(15)^2 = \frac{225}{2}g$$
 ...(iii)

Subtract (i) from (ii), we ge

$$(h_1 + h_2) - h_1 = \frac{100}{2}g - \frac{25}{2}g = \frac{75}{2}g$$

$$h_2 = \frac{75}{2}g = 3h_1$$
 ...(iv)

Subtract (ii) from (iii), we get

$$(h_1 + h_2 + h_3) - (h_2 + h_1) = \frac{225}{2}g - \frac{100}{2}g$$

$$h_3 = \frac{125}{2}g = 5h_1 \qquad \dots(v)$$

From (i), (iv) and (v), we get

$$h_1 = \frac{h_2}{3} = \frac{h_3}{5}$$

26. (b): Here, u = 0, g = 10 m s⁻², h = 20 m

Let ν be the velocity with which the stone hits the ground.

$$\therefore v^2 = u^2 + 2gh$$

or
$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20 \text{ m/s}$$
 [: $u = 0$]

27. (a): Let the two balls meet after t s at distance xfrom the platform.

For the first ball, u = 0, t = 18 s, g = 10 m/s²

Using
$$h = ut + \frac{1}{2}gt^2$$

$$\therefore x = \frac{1}{2} \times 10 \times 18^2$$
 ...(i)

For the second ball, u = v, t = 12 s, g = 10 m/s²

Using
$$h = ut + \frac{1}{2}gt^2$$

$$\therefore \quad x = v \times 12 + \frac{1}{2} \times 10 \times 12^2 \qquad \dots (ii)$$

From equations (i) and (ii), we get

$$\frac{1}{2} \times 10 \times 18^2 = 12\nu + \frac{1}{2} \times 10 \times (12)^2$$

or
$$12v = \frac{1}{2} \times 10 \times [(18)^2 - (12)^2]$$

$$12v = \frac{1}{2} \times 10 \times 30 \times 6$$
 or $v = \frac{1 \times 10 \times 30 \times 6}{2 \times 12} = 75 \text{ m/s}$

28. (b) : Given u = 0.

Distance travelled in 10 s, $S_1 = \frac{1}{2}a \cdot 10^2 = 50a$

Distance travelled in 20 s, $S_2 = \frac{1}{2}a \cdot 20^2 = 200a$

$$\therefore$$
 $S_2 = 4S_1$

29. (b) :
$$v^2 - u^2 = 2as$$

Given $v = 20 \text{ m s}^{-1}$, $u = 10 \text{ m s}^{-1}$, s = 135 m

$$\therefore a = \frac{400 - 100}{2 \times 135} = \frac{300}{270} = \frac{10}{9} \text{ m/s}^2$$

$$v = u + at \implies t = \frac{v - u}{a} = \frac{10 \text{ m/s}}{\frac{10}{9} \text{ m/s}^2} = 9 \text{ s}$$

30. (a): Distance travelled in the 3rd second = Distance travelled in 3 s – distance travelled in 2 s. As, u=0,

$$S_{(3\text{rd}_{8})} = \frac{1}{2}a \cdot 3^{2} - \frac{1}{2}a \cdot 2^{2} = \frac{1}{2} \cdot a \cdot 5$$

Given $a = \frac{4}{3} \text{ m s}^{-2}$; $\therefore S_{(3\text{rd}_{8})} = \frac{1}{2} \times \frac{4}{3} \times 5 = \frac{10}{3} \text{ m}$

31. (a): Time taken by a body fall from a height h to reach the ground is $t = \sqrt{\frac{2h}{\sigma}}$

$$\therefore \frac{t_A}{t_B} = \frac{\sqrt{\frac{2h_A}{g}}}{\sqrt{\frac{2h_B}{g}}} = \sqrt{\frac{h_A}{h_B}} = \sqrt{\frac{16}{25}} = \frac{4}{5}.$$

32. (a): As, $v^2 = u^2 - 2gh$

After reaching maximum height velocity becomes zero.

$$0 = (10)^2 - 2 \times 10 \times \frac{h}{2}$$
 \therefore $h = \frac{200}{20} = 10 \text{ m}$

33. (a): Interval of ball thrown = 2 s

If we want that minimum three (more than two) balls remain in air then time of flight of first ball must be greater than 4 s.

$$T > 4 \sec \text{ or } \frac{2u}{g} > 4 \sec \Rightarrow u > 19.6 \text{ m/s}.$$

34. (b): Let total height = H

Time of ascent = T

So,
$$H = uT - \frac{1}{2}gT^2$$

Distance covered by ball in time (T - t) sec.

$$y = u(T-t) - \frac{1}{2}g(T-t)^2$$

So distance covered by ball in last *t* sec.,

$$h = H - y$$

= $\left[uT - \frac{1}{2}gT^2 \right] - \left[u(T - t) - \frac{1}{2}g(T - t)^2 \right]$

By solving and putting $T = \frac{u}{\varphi}$ we will get

$$h = \frac{1}{2}gt^2.$$

35. (c) : For half height,

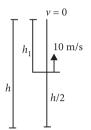
$$10^2 = u^2 - 2g\frac{h}{2}$$
 ...(i)

For total height,

$$0 = u^2 - 2gh \qquad \dots \text{(ii)}$$

From (i) and (ii)

$$\Rightarrow 10^2 = \frac{2gh}{2} \Rightarrow h = 10 \text{ m}$$



36. (c):
$$1^{st}$$
 case $v^2 - u^2 = 2as$

$$0 - \left(\frac{100}{9}\right)^2 = 2 \times a \times 2 \qquad [\because 40 \text{ km/h} = 100/9 \text{ m/s}]$$
$$a = -\frac{10^4}{24 \times 4} \text{ m/s}^2$$

$$2^{\text{nd}} \text{ case}: 0 - \left(\frac{200}{9}\right)^2 = 2 \times \left(-\frac{10^4}{81 \times 4}\right) \times s$$
[∴ 80 km/h = 200/9 m/s]

or s = 8 m.

37. (d): Initial velocity u = 0,

Final velocity = 144 km/h = 40 m/s and time = 20 s

Using $v = u + at \implies a = v/t = 2 \text{ m/s}^2$

Again,
$$s = ut + \frac{1}{2}at^2 = \frac{1}{2} \times 2 \times (20)^2 = 400 \text{ m}.$$

38. (a): Initial velocity of first body $(u_1) = 0$; Final velocity $(v_1) = 3$ m/s and initial velocity of second body $(u_2) = 4 \text{ m/s}.$

Height (h) =
$$\frac{v_1^2}{2g} = \frac{(3)^2}{2 \times 9.8} = 0.46 \text{ m}$$

Therefore required velocity of the second body,

$$v_2 = \sqrt{u_2^2 + 2gh} = \sqrt{(4)^2 + 2 \times 9.8 \times 0.46}$$

= 5 m/s

39. (a): Height of tap = 5 m. For the first drop,

$$5 = ut + \frac{1}{2}gt^2 = \frac{1}{2} \times 10t^2 = 5t^2$$
 or $t = 1$ s

It means that the third drop leaves after one second of the first drop, or each drop leaves after every 0.5 s. Distance covered by the second drop in 0.5 s

$$=\frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times (0.5)^2 = 1.25 \text{ m}$$

Therefore distance of the second drop above the ground = 5 - 1.25 = 3.75 m

40. (d): Initial velocity (u) = 0; acceleration in the first phase = α ; deceleration in the second phase = β and total time = t.

When car is accelerating then

final velocity
$$(v) = u + \alpha t = 0 + \alpha t_1$$

or
$$t_1 = \frac{v}{\alpha}$$
 and when car is decelerating,

then final velocity
$$0 = v - \beta t$$
 or $t_2 = \frac{v}{\beta}$

Therefore total time $(t) = t_1 + t_2 = \frac{v}{\alpha} + \frac{v}{\beta}$

$$t = v \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) = v \left(\frac{\beta + \alpha}{\alpha \beta} \right) \text{ or } v = \frac{\alpha \beta t}{\alpha + \beta}$$

41. (a) : Initial velocity (u) = 20 km/h;

Final velocity (v) = 60 km/h and time (t) = 4 hours. velocity (v) = 60 = u + at = 20 + (a × 4)

or,
$$a = \frac{60 - 20}{4} = 10 \text{ km/h}^2$$
.

Therefore distance travelled in 4 hours is

$$s = ut + \frac{1}{2}at^2 = (20 \times 4) + \frac{1}{2} \times 10 \times (4)^2 = 160 \text{ km}$$

42. (a) : Distance covered in n^{th} second is given by $s_n = u + \frac{a}{2}(2n-1)$

Here,
$$u = 0$$
. $\therefore s_4 = 0 + \frac{a}{2}(2 \times 4 - 1) = \frac{7a}{2}$

$$s_3 = 0 + \frac{a}{2}(2 \times 3 - 1) = \frac{5a}{2}$$
 $\therefore \frac{s_4}{s_3} = \frac{7}{5}$

43. (b): Let *h* be height of the tower and *t* is the time taken by the body to reach the ground.

Here, u = 0, a = g

$$\therefore h = ut + \frac{1}{2}gt^2 \text{ or } h = 0 \times t + \frac{1}{2}gt^2$$

or
$$h = \frac{1}{2}gt^2$$
(i)

Distance covered in last two seconds is

$$40 = \frac{1}{2}gt^2 - \frac{1}{2}g(t-2)^2$$
 or $40 = \frac{1}{2}gt^2 - \frac{1}{2}g(t^2 + 4 - 4t)$

or
$$40 = (2t - 2)g$$
 or $t = 3$ s

From eqn (i), we get

$$h = \frac{1}{2} \times 10 \times (3)^2$$
 or $h = 45$ m

44. (b): Distance covered in n^{th} second is given by

$$s_n = u + \frac{a}{2}(2n - 1)$$

Given: u = 0, a = g

$$s_4 = \frac{g}{2}(2 \times 4 - 1) = \frac{7g}{2}$$

$$s_5 = \frac{g}{2}(2 \times 5 - 1) = \frac{9g}{2}$$
 : $\frac{s_4}{s_5} = \frac{7}{9}$

Let PQ = s and L is the midpoint of PQ and v be velocity of the car at point L.

Using third equation of motion, we get $(40)^2 - (30)^2 = 2as$

or
$$a = \frac{(40)^2 - (30)^2}{2s} = \frac{350}{s}$$
(i)

Also,
$$v^2 - (30)^2 = 2a \frac{s}{2}$$

or
$$v^2 - (30)^2 = 2 \times \frac{350}{s} \times \frac{s}{2}$$
 [Using (i)]

or
$$v = 25\sqrt{2} \text{ km/h}$$

46. (b): Let v_1 is the velocity of Preeti on stationary escalator and d is the distance travelled by her

$$\therefore v_1 = \frac{d}{t_1}$$

Again, let v_2 is the velocity of escalator

$$\therefore v_2 = \frac{d}{t_2}$$

.. Net velocity of Preeti on moving escalator with respect to the ground

$$v = v_1 + v_2 = \frac{d}{t_1} + \frac{d}{t_2} = d\left(\frac{t_1 + t_2}{t_1 t_2}\right)$$

The time taken by her to walk up on the moving escalator will be

$$t = \frac{d}{v} = \frac{d}{d\left(\frac{t_1 + t_2}{t_1 t_2}\right)} = \frac{t_1 t_2}{t_1 + t_2}$$

47. (d): Let v_s be the velocity of the scooter, the distance between the scooter and the bus = 1000 m,

The velocity of the bus = 10 m s^{-1}

Time taken to overtake = 100 s

Relative velocity of the scooter with respect to the bus = $(v_s - 10)$

$$\therefore \frac{1000}{(v_s - 10)} = 100 \text{ s} \implies v_s = 20 \text{ m s}^{-1}.$$

48. (d) : Choose the positive direction of *x*-axis to be from south to north. Then

velocity of train $v_T = +10 \text{ m s}^{-1}$

velocity of parrot $v_p = -5 \text{ m s}^{-1}$

Relative velocity of parrot with respect to train

=
$$v_P - v_T = (-5 \text{ m s}^{-1}) - (+10 \text{ m s}^{-1})$$

= -15 m s^{-1}

i.e. parrot appears to move with a speed of 15 m $\rm s^{-1}$ from north to south

:. Time taken by parrot to cross the train

$$=\frac{150 \text{ m}}{15 \text{ m s}^{-1}}=10 \text{ s}$$

